Numerical Solution of Singularly Perturbed Differential-Difference Equations with Small Shifts of Mixed Type by Differential Quadrature Method

نویسندگان

  • H. S. Prasad
  • Y. N. Reddy
چکیده

In this paper, we have presented the Differential Quadrature Method (DQM) for finding the numerical solution of boundary-value problems for a singularly perturbed differential-difference equation of mixed type, i.e., containing both terms having a negative shift and terms having a positive shift. Such problems are associated with expected first exit time problems of the membrane potential in models for the neuron. The Differential Quadrature Method is an efficient descritization technique in solving initial and/or boundary value problems accurately using a considerably small number of grid points. To demonstrate the applicability of the method, we have solved the model examples and compared the computational results with the exact solutions. Comparisons showed that the method is capable of achieving high accuracy and efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts

In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

A method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers

In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...

متن کامل

Numerical Treatment of Singularly Perturbed Two-Point Boundary Value Problems with Mixed Condition Using Differential Quadrature Method

This paper presents the application of Differential Quadrature Method (DQM) for finding the numerical solution of singularly perturbed two point boundary value problems with mixed condition. This method is based on the approximation of the derivatives of the unknown functions involved in the differential equations at the mess point of the solution domain. It is an efficient discretization techn...

متن کامل

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012